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Faustmann Goes to the Sea, Optimal Rotation in Aquaculture

Abstract

Among the most important managerial decisions in aquaculture is that of determining the optimal rotation time, i.e., finding the sequence of release and harvesting that maximizes the overall farm profit. In this paper I establish the link between the fish farming problem and the similar problem in forestry. I further present why the solution to the forestry problem, i.e. the Faustmann solution must be extended to take care of some special features inherent in fish farming. The application of the model is illustrated through some intuitive examples. 
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Faustmann Goes to the Sea, Optimal Rotation in Aquaculture

As fish farm enterprises get larger and the industry becomes more competitive, optimal production planning and efficient management practice become key factors for success. The fish farmers faces several decisions problems with major impacts on potential profit Among the most important managerial activities in commercial aquaculture is that of determining the optimal rotation time, i.e., finding the best sequence of release and harvesting that maximizes overall profit. This plan has impact on the cash flow from the farm as well as the allocation of limited resources in production, such as feed, fish, space, and environmental resources (Cacho 1997).

The rotation problem in fish farming has, together with other fish farming management problems, a lot in common with solved problems in forestry and animal husbandry. Bjørndal (1988) states it this way: “Conceptually, aquaculture is more similar to forestry and animal husbandry than to traditional ocean fisheries” (Bjørndal p.139 1988). Karp, Sadeh and Griffin (1986) establish the link between the rotation problem in fish farming and that in forestry. A correct solution to the forestry rotation problem is attributed to the German forester, Faustmann, who wrote a treatise on the subject as early as 1849 (Faustmann 1849). I will in this article present the optimal rotation time problem for aquaculture, present the Faustmann solution in the aquaculture context, and illustrate how the traditional model can be extended to take care of some specific features prominent in aquaculture.

During the last decade, several models for optimal harvesting of farmed fish have been developed. However, most of these studies consider only a one-shot decision instead of treating the problem in a dynamic contest, i.e. decisions on optimal rotation. With space, (volume) as a constraint, this is a serious shortcoming of traditional models. As the marginal value decreases over time, harvesting makes room for new releases of younger and faster growing fish. (Bjørndal 1988). I will argue that considering a one-time investment only gives at best a rough estimate of the optimal harvesting time. 

This paper present a dynamic programming model that solves the rotation problem in aquaculture. Compared to other models, this model is more flexible and general in nature. The model can be used for different species of fish and different farming technologies. While general in nature, the model will mostly be phrased in terms of salmon farming, as farming of salmon is a complex production with features that demands a flexible model. Two particularly important aspects of the optimal harvesting problem will be emphasized. First as the possibilities to release juvenile fish at any time of the year is limited for some species. Second, due to seasonalities in supply and demand, relative price relationships between different sizes of fish vary through the year. Hence, large fish would be relatively better paid than small fish at some times of the year, while the opposite might be the case at other times of the year. When solving for the optimal harvesting time the model should manage to include all sort of relative price relationships. 

In what follows the rotation problem in fish farming is outlined, main characteristics of fish farming are stressed and lines to similar problems in other industries are drawn. I then briefly review previous models before I present my model. Finally I Illustrate the usefulness of the model and summarize the findings.

Optimal rotation time in aquaculture

The technology for farming of different species varies across and within species. Some species are cultivated in ponds, while other are cultivated in pens immersed in seawater. However, in general the principles are the same. Very simplified the process of fish farming can be describe as follows: the farmer releases certain amount of recruits/juvenile fish in pens/ponds, feed them for some time and harvest them when they have reached an appropriate marketing weight. When the fish is harvested, space is made available for new juvenile fish. The farmer can then decide if he wants short rotations and market small fish, or longer rotations and larger fish. For some species it is possible to start a new generation any time of the year, while the possibilities for starting new rotations for other species are limited to certain times of the year. The farmer’s two most important decisions in the production process are then: 1) When to transfer the juvenile fish to the pond/pen and 2) when to harvest the fish, i.e. when to start and when to end a rotation.

In addition to the similarities between fish farming and forestry, decision problems in aquaculture are similar to problems in traditional livestock production. Livestock units are managed either for the carcase meat harvested at the end of their lives (such as beef, mutton, pork and chicken) or for the produce extracted from the animals over their lives (such as milk, eggs and wool) or both. Feed is a necessary maintenance input that has to be managed. The product return to feed input typically changes continuously over the life of the unit. Productivity often increases first, before it starts to decline with livestock age. Given that the livestock enterprise is a going concern, a decision must be made on when to replace the aging unit with a younger one. To find the optimal rotation time in fish farming is hence very similar to finding the optimal rotation time in i.e., broiler production.
 

Previous research on optimal harvesting time in aquaculture
While several studies exist on optimal harvesting problems for farmed aquatic species, I will argue that most of these studies do not catch the important aspects. Cacho (1997) presents a chronological review for the period 1974 to 1996. His list is not exhaustive but presents the main trends in the field over the last 20 years. He finds that the most popular species for modeling is shrimp, prawn and salmon. While some of the papers focus on specific species and technologies, other claim to be more general and applicable for different technologies and species. I will in the following briefly review some of the studies.

Karp, Sadeh and Griffin (1986) consider the problem of determining optimal harvest and restocking time and level for farmed shrimp. They first consider the case where production occurs continuously, modeled as a deterministic, continuous time autonomous control problem. A harvest and subsequent restocking is modeled as “jumps” in the biomass. Their contribution to the traditional Faustmann solution is that the optimality conditions determine the restocking level as well as the harvest level. Second, they consider the situation where the environment is uncontrolled modeled as a stochastic control problem. They then proceed to solve it with dynamic programming. However their model is not flexible enough to include different relative price relationship, and since a shrimp rotation can start any time of the year, they do not look at limitations in starting times.

Bjørndal’s (Bjørndal 1988; 1990) point of departure is that fish in a pen is nothing else than just one particular form of growing capital. Hence the objective of finding the optimal harvesting times is similar to maximize the present value of an investment. Bjørndal present a bioeconomic model where he illustrates the changes in biomass value over time as a function of growth, natural mortality and fish prices. He then adds costs to the model and presents a comparative statics analysis of the effects of changes in the parameters on optimal harvest date. However the model is in terms of a one-time investment, what happens after the harvest is not considered. Bjørndal admits though that: ”it is not sufficient to merely consider a single harvesting time. The problem in question represents an infinite series of investments rather than a one time investment.” (Bjørndal, 1988: p 153). He therefore very briefly presents a Faustmann like solution to the problem. However the model can neither treat the problem with limitations in release time nor treat dynamics in relative price relationship.

Several authors have extended Bjørndal’s model to emphasize specific aspects of the problem. Arnason (1992) introduces dynamic behavior and presents a general comparative dynamic analysis. He also introduces feeding as a decision variable. Heaps (1993) deals with density independent growth, whereas Heaps (1994) allows for density dependent growth and also looks at the culling of farmed fish. The last paper down the Bjørndal avenue is Mistiaen and Strand (1998) who contribute by demonstrating general solutions for optimal feeding schedules and harvesting time under conditions of piecewise-continuous, weight dependent prices. None of these studies considers the rotation problem.

As this brief review illustrates, only the Karp, Sadeh and Griffin (1986) and Bjørndal (1988;1991) discuss the rotation problem. However both assume that when one yearclass is harvested, the next one is released immediately. This again implies that recruits are available throughout the year, which is not the case for a number of important species (salmon among others). None of the papers discuss the problems of dynamics in relative price relationship. As changes in relative prices are prominent in aquaculture (Asche and Guttormsen 2001), I will argue that this is a serious weakness of their model. 

The Faustmann solution 

As mentioned above, is the optimal rotation time problem in aquaculture very similar to the historical rotation time problem in forestry (i.e., the Faustmann problem).
 I will in this section present a “Faustmann-like” solution to the problem of finding the optimal rotation time in fish farming. Several methodological approaches to solving the Faustmann problem exist. The presentation here will be based on dynamic programming since that approach offers insights into the economics of dynamic optimization, which can be explained much more simply than can other approaches.

The Faustmann problem can be explained as in the following.
 A given area of land has been committed indefinitely to timber production. If there are trees already standing, a decision to be made at every stage is whether to allow the trees to grow at least until the next decision stage or to clear-cut the stand and replant.
 In the simplest case, the only state determinant of the decision is the age of the trees. All trees in the stand are the same age. If the land is bare, the only possible action is to plant trees. 

We can think of fish in a pond/pen in a similar way. We suppose that a pen/pond has been committed indefinitely to fish farming. If there are fish already swimming in the pen, the decision to be made at every stage is whether to let the fish grow for another period, or to harvest the fish and release new juvenile fish. We denote juvenile fish and release cost as 
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 assuming that these costs are incurred at the beginning of the period when the pen is empty. The return from harvesting and selling the fish (net of all harvesting, transport and selling cost) is a function of the age of the biomass,
 and is referred to as net biomass value 
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 (we can think of 
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 as the time of sexual maturity or eventually death). For this model we further assume that the release of new juvenile fish immediately follows harvesting. The fish must be harvested if it reaches 
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years of age.

The objective is to maximize the present value of net income streams to infinity. I.e. maximize the present value of an investment (the living biomass) by determining the optimal rotation time. The juvenile fish-/release costs and discount factor 
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 are assumed constant through time. Because the prospects for a pond with fish aged 
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 years in all rotations are identical, the optimal decision and present value of net income 
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The typical optimal policy for this problem can be defined in terms of the optimal rotation period 
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We then have the present value function for this policy namely
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Now 
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 is the rotation period for which 
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is maximized. To illustrate how to find 
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 denote the present value of net income to infinity derived from a pond/pen of fish aged 
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would be inconsequentially small. It is of particular interest that the fish farmer would be indifferent between 
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. Another way of expressing this is that when the age of the biomass is 
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Substituting 
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Equation 
(5)

 is a discrete version of the historical Faustmann formula,
 which specifies the condition for the optimal rotation period  GOTOBUTTON ZEqnNum215215  \* MERGEFORMAT . The term 
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 is the capitalized value of the pen immediately prior to releasing new juvenile fish. This is in the forestry literature referred to as site value or soil expectation, and can be thought of as the opportunity cost of the pen/pond. Organizing a little from 
(5)

 and expressing  GOTOBUTTON ZEqnNum795733  \* MERGEFORMAT  in terms of 
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 gives us an alternative version of the Faustmann formula. 
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A diagrammatic interpretation of the optimal rotation is given in figure 1. The net biomass value is added to the pen value and gives the curve 
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Limitations of the Faustmann model in an aquaculture context

The above analytical solution of the Faustmann model relies on several strict assumptions. Some of these assumptions can be met in aquaculture while others are unrealistic. I will in this section discuss some of the assumptions, and then present a more flexible model that loosens up the assumptions that might be unrealistic in an aquaculture context.

The Faustmann model in it simplest form requires that you start a new rotation in the same moment as you end the previous one. This is not realistic for a lot of farmed species. Salmon smolts for instance can only be released at certain periods in the year.
 So if the Faustmann model prescribe that a salmon should be harvested after 21 months in sea, and the rotation starts in March, harvesting will be in November. The farmer will then have empty pens until March next year. An optimal harvesting model should consequently manage to take this aspect into account. Note that inclusion of limitations in starting time means that we will not have any universal optimal harvest day. Instead optimal rotation will be different for different groups of fish based on when the rotation started. 

A problem related to prices that are apparent in fish farming but not so relevant for forestry is relative price relationship among sizes of fish. While a tree in the forest only will be a tree of a marginal larger size as time goes by, a salmon that grows will “jump” from one quality class to another with certain distinct characters every time it develops into a new weight-class. Several studies indicate that the farmer gets different prices for different sizes. If the relationships between prices for different weightclasses is constant this can easily be incorporated into the Faustmann model. However Asche and Guttormsen (2001) examine relative prices (i.e. relationship between prices for different weight classes) for salmon and find that relative prices vary throughout the year, i.e., there exist patterns in the relative price relationships. Some part of the year large fish gets a higher price per kilo than small fish, and at other parts of the year the situation is the opposite. A harvesting model should manage to take care of different price relationships.

A third aspect that also might create problem in the traditional Faustmann model is growth functions. The Faustmann model requires that the fish grow according to well-defined growth functions, growth functions that are independent of starting time. Fish growth, however, is (among other) a function of water temperature, and water temperature often varies through the year. For species living in tropical areas where changes in water-temperature are low, it might be reasonable to operate with just one general growth function. For species farmed in areas with high variability in water temperature i.e. salmon, temperature varies in such a way that we will have different growth functions based upon when (in the year) we release the fish. Fish will consequently grow at different speed during the year. A fish that starts its life in i.e., January will have another growth curve than a fish that starts in e.g. August.

The Augmented model

I will in this section present a model that can take care of the problems raised in the previous section. The model can be as follows. Once we have fish in the pen, the problem is in principle similar to the simple Faustmann version. The farmer can at every decision stage either harvest the fish or wait. If he harvests, he will have an empty pond/pen where he can either start a new rotation or not. If he harvest he will get the biomass value 
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 plus the value of the empty pen (we will come back to the value of the empty pen later). The value of waiting is then the discounted value for the next period minus the incurred feeding cost. i.e. -
[image: image59.wmf]{

}

1

f

cVt

a

++

. The object is then to maximize the present value of the decision by deciding to harvest or not. This decision can then be written as 
[image: image60.wmf]{

}

{

}

Max1

f

d

btdcVt

a

éù

-++

ëû

, where 
[image: image61.wmf]d

 is the decision variable, taking 0 for wait and 1 for harvest. Biomass is dependent upon number of fish, and the weight of each fish. We assume homogeneity among the fish (i.e. all fish grow at the same speed, we can speak of a representative fish). The biomass of a yearclass 
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where 
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 is the weight of the (representative) fish. As time increases, two processes will influence the growth of biomass. Some fish will die and the other will gain weight. Number of fish is consequently a function of the number of fish in the beginning 
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 can be treated as constant or vary through the year as a function of the size of the fish and time of the year. When presenting the formula a little bit more formalistic we can write this as 
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Here 
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 is maturity rate and finally 
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is the growth rate here as a function of initial weight and week in the year.
 

Immediately after harvesting, the pen is empty and the farmer must decide whether to release new fish or to wait. Hence, he must at every stage decide whether releasing juvenile fish now or wait maximizes net present value of the pen/pond. The value of the empty pond/pen can then be written as 
[image: image82.wmf]{

}

1

max

rt

s

csV

a

+

-+

 where 
[image: image83.wmf]s

 is a decision variable taking 1 for release and 0 for wait. 
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 is the value on the next period. More formally this maximization problem can be written as:
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The value when releasing fish will be the discounted future value of the pond/pen minus the cost of releasing, 
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 is then a first day death rate. This parameter will then be used to handle limitations in release time. In periods where it is impossible to release juvenile fish, we just set the 
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When attempting to solve the optimal rotation time problem equation 
(9)

 will be solved simultaneously. The extended model put neither restrictions on growth, prices nor relative price relationships. The model can also easily incorporate all different costs and then examine what happens with rotation time when changes occurs in one or several of the parameters. However the extended version of the problem collapses down to the traditional Faustmann problem developed in the previous section. If; the growth function is independent of release time, (8)

 and  GOTOBUTTON ZEqnNum420550  \* MERGEFORMAT  equals zero (means that it is possible to release fish during the whole year) there are no seasonalities or fluctuations in prices or costs. 

A theoretical illustration

To illustrate the strength and usefulness of the extended model, I will in this section present a simple illustration of the model where the results from the Faustmann model are compared to results from the extended one. Hence, I have programmed the two models described above and solved them with very general assumptions.
 To emphasize the difference of the two models, unnecessary details are ignored.

The first part to define is growth in biomass. As biomass is a function of numbers of fish and weight, I defined a proper weight function, and decided which maturity level to use. Farmers usually work with either tabulated growth charts or formulas. I have for simplicity used a slightly updated version
 of the growth function provided in Bjørndal (1991). I have worked with the following growth function 



[image: image91.wmf]23

()2.80.7

wttt

=-


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (10)

where 
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 are years. I have tabulated the function monthly for use in the model, monthly maturity rate is set to 0.8% and I have used a 7% interest rate. To simplify zero cost is assumed. The models are then solved with different assumptions about release time and relative price relationship. 

I started by solving the standard Faustmann model. With a price per kilo salmon of NOK 26, the fish should be harvested at 21 months age when the fish has reached 4.8 kilos marketing weight. However, this solutions implies that recruits are available throughout the year, and that it is possible to release throughout the year. As this is not the case, we limited release to March, April, May, August, September and October. The model then gives completely different rotation time. The results for the different release time are presented in table 1. As we can see only the fish released in August will be harvested at 4.8 kilo, fish released at other times of the year will be harvested between month 19 and month 23 (4.2 - 5.3 kilo) 

[Table 1 approximately here]

To illustrate another of the advantages with the extended model I have formulated the same problem as above, but in addition included a non-constant relative price relationship. This relative price relationship is based on the results in Asche and Guttormsen (2001) and included in the following way. Based upon price observations for salmon of different sizes from 1993 to 1998 a monthly relative price index is constructed for each weight class. 3-5 kg is used as a base weight, i.e. the price equals 1. The price index for the other weight classes 5-6 kg in for instance January is then calculated as 
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A graph of the price indexes is provided in figure 2. As can be seen, larger fish will usually be more valuable than smaller fish, however, it changes during the year. Looking then at the optimal harvesting result in table 1, we see that the numbers changes quite a bit. Fish released in April should now be harvested at 3.32 kg after 16 month in sea instead of at 5.36 kg after 23 months in sea. Also for all the other release time the inclusion of relative price relationship changed the harvesting time. 

Concluding comments

I have in this paper presented the rotation problem in fish farming. We have showed that this problem has a lot of features in common with the famous Faustmann problem in forestry, and to other solved problems in traditional husbandry. However farming of fish also has some special characteristics that force us to do some adjustment to the standard Faustmann setting. I have done that by presenting a model that is general and flexible enough to treat different species and technologies of aquaculture.

To illustrate some of the strength of the model I present a very simple example of the use of the model. However this simple example illustrate very well the importance of a model that can treat different relative price relationship as well as limitations on when it is possible to start a new rotation. Asche and Guttormsen (2001) claim, "we in general cannot say anything about the direction of the changes in the harvesting time due to the cycles in relative prices". This claim is confirmed with the extended model, fish released at some time of the year will have higher harvesting weights when relative price relationship is included, while fish released at other times of the year will have lower harvesting weight. 

The title of Faustmann paper is "Calculation of the Value of which Forest Land and Immature Stands Possess for Forestry" this title indicates that the Faustmann model originally was developed to value the forest. The optimal rotation time question was more a by-product, than the main focus. Our focus has been on optimal harvesting time, but I can as well turn it around and use the model to value a fish farm pen/pond or a complete fish farm enterprise. However this is left for another occasion. 
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Figure 1 Conditions for the optimal rotation period, t*
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Figure 2. Price Index, relative price relationship. Based on historical observation 1992-1998. 

Table 1: Optimal harvesting time with and without relative price relationship.


Harvest weight (age in months)

Release time
Constant prices
Relative price Relationship
Faustmann

March
4.24 (19)
3.63 (17)
4.82 (21)

April
5.36 (23)
3.32 (16)
4.82 (21)

May
5.10 (22)
6.47 (29)
4.82 (21)

August
4.82 (21)
6.03 (26)
4.82 (21)

September
4.54 (20)
5.60 (24)
4.82 (21)

October
5.10 (22)
5.36 (23)
4.82 (21)

Footnotes

� For a excellent review of studies treating optimal replacement problems in agriculture see Kennedy (1986)


� For a thoroughly presentation and discussion of the problem, see Clarke 1990


� This presentation of the dynamic programming Faustmann model relies heavily on the presentation in Kennedy (1986)


� It is also possible to cut some trees in between, thinning, but we are not considering that problem


� For simplicity we assume here that fish weight is only is a function of age. This is of course a simplification since temperature, day length, feeding etc. also will influence. 


� To be rigorous the stage interval must be approaching zero. For historical background and a full exposition of the analytics of the optimal rotation, see Samuelson 1976


� Due to biological and economic reasons, smolts can only be transferred to sea during a certain period of the year (March-August). In nature, salmon spawn during late spring, and hatch normally in January. Therefore, most salmon produced “are born" in January. The supply of smolts is consequently limited in other periods. Smolts are not very found of cold weather, so release during the winter months are also connected with great risk of loss


� With all different price relationship, I limit it to all deterministic price relationship. I am not considering stochastic prices in this model. 


� To simplify, we ignore harvesting cost here.


� Follows the biological model developed by Bjørndal (1990)


� Growth functions in practical fish farming is usually tabulated, i.e. the table says how much a fish of size � EMBED Equation.DSMT4  ��� will grow in one day with a water temperature of � EMBED Equation.DSMT4  ��� degrees. 


� We have for simplicity assumed weight gain to be zero the first period. This assumption is reasonable because the fish need some time in the pen to adopt to the new environment.


� The models are both programmed in MATLAB from MathWorks Inc. and solved with a toolbox developed by Mario Miranda and Paul Fackler (Miranda and Fackler 2001)


� Bjørndal’s (1991) growth functions are based on data from salmon farmed in 1988. Since then selective breeding, feed and feeding technology have improved the farming such that the fish grow much faster. 
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