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Abstract

The level of fisheries production is generally assumed to be a function of the level and quality of inputs employed ("effort") and the level of the stock. While the level of most physical inputs used in fisheries can often be readily quantified, the quality of the inputs used and the level of stock is often unobservable, and needs to be imputed from the available data. Input quality (including skipper and crew skill) is often measured as differences in technical efficiency. However, derivation of such measures still requires appropriate measures of stock abundance. While measurement of stock abundance is routinely undertaken by biologists for key individual species, the estimation of multi-species production functions require a composite stock index of all species caught, many of which are not examined by the biologists. 

In this study we propose a new method to calculate the composite stock index based on the changes in the DEA efficiency scores over time. The DEA analysis is configured such that within period variations in efficiency are independent of the underlying stock, and between period differences in efficiency are thereby assumed to be directly proportional to changes in stock abundance. We have applied this method to analyse the octopus fishery that operates in the Spanish South Atlantic region over the period 1991 to 1997. The index was used to estimate the frontier production function over the same period, and the results compared with other indicators of stock abundance (i.e. catch per unit of effort). The results of the analysis suggest that the method is suitable for deriving composite stock indexes for the purposes of production function estimation when fishery independent indexes do not exist.

Paper presented at the XII Conference of the European Association of Fisheries Economists, Salerno, Italy, 18-20 April 2001.

Introduction

A production function relates the observed level of outputs with the level of resources employed in a production process. A number of papers have been published regarding production functions and their applications in fisheries using a range of different functional forms. These include Cobb-Douglas production functions (Hannesson 1983), CES production functions (Campbell and Lindner 1990), and translog production functions (Squires 1987, Pascoe and Robinson 1998).

Production functions are estimated as an average of how well the different observations perform in the data considered. The production functions assume that all units are efficient and any differences in their performance is purely random ( i.e. luck). In contrast, stochastic production frontiers (SPF) distinguish between differences in performance due to efficiencies from differences due to the stochastic effect. The frontier indicates the maximum level of output that could be obtained given a certain level of inputs if the units considered were efficient. Another method to estimate efficiency is using the Data Envelopment Analysis technique (DEA). DEA frontiers are based on optimal units and the frontier also represents the maximum level of output that could be obtained given a certain level of inputs if the units considered were efficient when no random noise is considered.

Many difficulties appear in choosing the right set of inputs in the estimation of production frontiers in fisheries. Many of them, like skipper skill, are difficult to quantify. One of the inputs more difficult to evaluate is the stock measure as often there are no stock information available. Failure to take into account the effects of changes in stock size on catch will lead to either mis-specification bias in the production function, or, in the case of a production frontier, the effects of stock change being captured in the inefficiency component of the model.

One approach that has been used is to assume that changes in the average level of catch per unit of effort (CPUE) over time is indicative of changes in stock size, and hence may be used as an stock index. For example, Kirkley, Squires and Strand (1995,1998) used the CPUE of a reference fleet as an indicator of stock abundance and incorporated this index directly into the translog production frontier as an explanatory variable. This is also a common assumption underlying most biological estimates of stock abundance. There are a number of potential problems with this approach. Foremost of these is the implicit assumption of constant returns to both effort and stock. Catch per unit of effort is only proportional to stock size if the catch-effort relationship is of the form C=qES, where C is the catch, q is a proportionality constant (the ‘catchability’ coefficient), E is the level of fishing effort and S is the stock size. Under these circumstances, C/E = qS and hence CPUE will therefore be proportional to stock size. However, from the studies of production functions in fisheries mentioned above, constant returns to either effort or stock is generally an unrealistic assumption.

The main objective of this paper is to present a method for deriving a stock index from the available data that does not involve any restrictive assumptions regarding the relationship between catch, effort and stock size.  The method is based on bilateral comparisons of the efficiency of vessels in different time periods, similar to the approach used by Cooper, Seiford and Tone (2000) when comparing the efficiency scores of different groups. The efficiency scores used in the comparisons are estimated using DEA. DEA is preferred to SPF for the estimation of the stock index because of two main reasons. Firstly, DEA assumes no functional form on the production function and secondly, it seems more convenient if it were necessary to work with a multi-output approach to derive a composite index for multi-species fisheries. The method was applied to the octopus fishery that operates in the Spanish South Atlantic region. The index was subsequently used to estimate the frontier production function over the same period, and the results compared with other indicators of stock abundance (i.e. catch per unit of effort).

Methodology

The basic idea is to measure changes in efficiency over time and to analyse if efficient observations become inefficient or more efficient (i.e. super-efficient) when considered in a different time period. As was previously stated, these efficiency scores are calculated using DEA. In the first stage, the efficiency of each vessel is estimated taking as a reference set the vessels that operate in the same month as the one under evaluation. An assumption is made that over the month the stock conditions is relatively constant, such that differences in catch not attributed to differences in input use are due to differences in efficiency. In order to determine the possible effects of changes in stock on catch, the effect of differences in efficiency have to be removed. This is achieved by projecting each observation onto the frontier. 

To estimate the effects of stock changes on catch between periods, the output of the vessels in each period (adjusted to remove the effects of inefficiency) are compared with the (efficient) output of the set of boats in a base period. Deviations from the efficient frontier in the base period are assumed to be indicative of the effects of changes in stock on the output of the firm being examined. 

This is illustrated in Figure 1 for a two-output production process. In the first stage, the efficiency estimates derived from DEA are used to determine the efficient output for each vessel. For example, in Figure 1(a), E is inefficient. The level of output that E could produce if operating efficiently is E*, given by a radial expansion to the frontier (defined by vessels A, B, C and D). The expansion factor,  is equivalent to E*/E, while the level of technical efficiency of vessel E is given by TE=1/. An efficient vessel has a value of the expansion factor of =1, and inefficient vessels have values >1.

In the second stage, the efficient levels of output of vessels in time t((1) are compared with the efficient frontier in some base period (time 1). As the vessels are operating under different stock conditions in time t, it is possible for the efficient catch to be either above or below the frontier level in time 1. For example, the efficient output of vessel Z in time t is greater than the efficient frontier in time 1. In this case, <1, and TE>1. In contrast, the efficient output of vessel X (assumed to come from a different time period than vessel Z) is below the frontier, such that >1, and TE<1. 

The average TE in period t is therefore a measure of by how much catch is expected to be higher as a result of differences between the two periods. As differences in efficiency have already been removed through use of efficient levels of output in the analysis, and as random variations are assumed to be equally distributed over time (and assumed to be neutralised through averaging the TE of the individual vessels), then the average TE is most likely representative of the average effect of stock change on catch.

Figure 1. Two output production possibility frontier
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In order not to impose any restrictions on the returns to scale, we have considered the output-orientated Banker, Charnes and Cooper (1984) (BCC) model, which allows for varying returns to scale. The BBC model is given by:

Maximize
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where xi,j,t corresponds to the level of input i used by DMU (decision making unit, such as a vessel) j in time t, and 
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to the input i of the DMU under evaluation in time t. Analogously, yr,j,t represents output r of the DMU j in time t, and 
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 represents output r of the DMU under evaluation in time t. The nt units in the reference set are those operating in the same time period t than as vessel under evaluation. The value of (1 (1<(1<() corresponds to the proportional increase in the outputs that would make DMU j0 efficient. The TE score associated with DMU j0 is 1/(1 which varies between zero and one. The efficient level of output y of the DMU j0 in time t is given by 
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The second stage of the analysis is given by:

Maximize
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where TE2=1/
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2 represents change in (efficient) output due to the change in the underlying stock conditions between time t=1 (the base time period) and time t. This is estimated for each vessel in time t using as a reference set, the vessels operating in time 1. The value of TE2 and 
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Use of the stock measure in a production function or frontier

The measure of TE2 represents the proportional shift in catch as a result of changes in stock conditions. If the underlying production function was assumed to have a Cobb-Douglas functional form, then the average measure would represent S, and the production function would be given by 
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. An implicit assumption in such a case is that variation in the TE2 scores in the second part of the analysis is due to variations in “luck” between the two periods. These random differences could be separated from any measures of inefficiency using a stochastic production frontier.

If a translog production function is assumed, then it is possible that the effects of changes in stock can vary with the level of effort employed. In a translog, the effect of stock on the log of catch is given by 
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. As a result, the impact of the stock change output will vary by boat, depending on its level of effort (i.e. a combination of boat size and days fished). In such a case, variations in the individual TE2 score may represent both random fluctuations in catch (which presumably could be separated out using a stochastic production frontier) as well as the effects of changes in stocks between time periods specific to the activity of the boats.

In either case, the measure of stock change already incorporates the possibility of diminishing (or increasing) returns to stock. Incorporation of this measure into a production function as an explanatory variable creates difficulties, as the coefficient associated with the variable will need to be restricted to 1. This is even more problematic in the translog, as the measure also includes the effects of interactions with the other variables. To overcome these problems, the index is not used as an explanatory variable per se, but is used to adjust the output measure in order to allow for the effects of stock change on output to be incorporated into the analysis. That is, the model is specified, in the case of a Cobb-Douglas, as 
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The Spanish South Atlantic fishery
The method was applied to the fleet based in Conil Port that operates in the Spanish South Atlantic region for the period 1991-97. This is an artisan fishery and its vessels are small and not very powerful, with trip lengths of only one day (Table 1). Information was available on around 70 vessels, although not all of them operated in all the periods considered. 

Table 1. Technical characteristics of the fleet


Mean
Standard Deviation

Gross Registered Tonnage (GRT)
2.95
0.55

Horsepower (HP)
31.4
7.5

Trips per month
8.34
4.8

The fishery is primarily a multi-species fishery (Table 2). However, within the fishery there is an octopus fishery that is a distinct activity undertaken by the fleet during a certain time of the year. During this period (generally November to May), most vessels target octopus. The catch generally has little bycatch during this period, with 80-100% of catch consisting of octopus. During the summer season, the composition of the catch is much more varied, with more than 50 different species being found in the landings. As it seemed that in most cases, both activities are carried out independently, the data were separated into two. Only observations with landings with more than 75% of octopus were considered in the analysis.

Table 2. Catch of octopus and other species, 1991-1997

Year
Octopus
Other species
Total landings
% Octopus

1991
203,716
248,543
452,259
45

1992
360,376
263,965
624,340
58

1993
530,940
299,503
830,442
64

1994
733,113
284,982
1,018,096
72

1995
473,277
332,438
805,715
59

1996
149,982
574,460
724,442
21

1997
8,256
611,591
619,847
1

From the landing data (Table 2) it can be observed that captures of octopus were very high for the first years considered, reaching a peak in 1994. However, it seems that too much pressure was exerted on the stock and since then, octopus catch experienced a sharp decline. In 1997, octopus catch had dropped down to only 8,000 kilos, and the percentage of octopus in the overall catch had been drastically reduced to just 1%. This seems to be due to a overexploitation of the stock rather than to a change in fishermen’s interest or to a change in demand as average price of octopus increased sharply since 1994. The catch of other species was kept fairly constant until 1994. Since then, it seems that the fleet turned to them as the target species in compensation for the lack of octopus. As a result, the quantity of other species in the landings substantially increased. Non-octopus landings in 1997 were more than double those in 1994.

Three inputs were used in the analysis: a physical measure of boat capacity (measured in GRT), engine power (measured in HP) and number of trips per month. There were other inputs available (e.g. number of crew members, year of construction, number of nets, length, etc.), but these were not finally considered in our study. In order to decide which inputs should be included in the analysis, a simple indicator of efficiency was initially developed, such as catch per unit of input (in this case, the number of trips) for each of the observations. The indicator was standardised by dividing it by the maximum value obtained (Norman and Stoker, 1991). The correlation coefficient between this measure and each of the inputs available was then estimated. Only inputs that were highly correlated with the simple efficiency indicator were considered in the analysis. Neither the number of crew members nor the number of nets or other gears were highly correlated to the simple efficiency indicator. While the latter result could seem paradoxical, it is likely that many of the vessels in the fishery use some other gears (there were some of them recorded as having no nets) for which there was no information available. Surprisingly, the year of construction was negatively correlated (older vessels being more efficient). However, most of the vessels had been modernised and repaired and these changes are not recorded in statistics. Hence, some of the old vessels are, in fact, quite modern and can be compared to newer ones. Moreover, old vessels often correspond to more experienced and skilled skippers and hence may result in more efficient vessels. As a result, age of the vessel was not considered to be a useful indicator of productivity.

Only one output, yi, the amount of octopus catch, was considered for each observation. Hence, the derived index is effectively an indicator of changes in the octopus stock. Some of the output observations in the data base differed substantially (i.e. being much lower) compared with vessels with similar characteristics operating in the same time period, and could be considered outliers. DEA was initially used to determine if any vessels had significantly lower efficiency scores than the general group, possibly representing reporting errors. These vessels were considered to be outliers in the data and were excluded from further analysis.

Initially it was thought that the analysis could have been carried out at the season level, obtaining stock indices for each season (approximately from November to May the following year) rather than for each month. The efficiency scores of each vessel in each month was initially estimated (using DEA) relative to all vessels in all months. It was found that the highest efficiency scores corresponded to the observations at the beginning of the fishing season (around November), and these steadily decreased until the end (around May). The same situation occurred for all seasons considered. Differences in efficiency over the season were most likely be due to changes in stock (higher at the beginning of the season) rather than to efficiency itself. Hence, it was considered more appropriate to conduct the study on a monthly basis.

The efficiencies of all vessels were estimated using the BCC model above. The reference set included in the analysis was the set of vessels that operate in the same month as the vessel under evaluation. By doing this, we obtained a set of efficiency scores for each vessel relative to each of the months considered. Then we transformed each observation into the projected point on the frontier, making them efficient units by radially expanding their outputs (i.e. multiplying them by (1). Finally we analysed the efficiency of the transformed units (all of them efficient when compared to their corresponding time periods), including all the observations (one at a time) of all time periods in the base reference set in time t.  The new estimate of technical efficiency (i.e. 1/(2) is a measure of the degree to which efficient catches for a given set of inputs changes between periods, and is assumed to reflect changes in the underlying stock conditions.

The stock indicators derived from the DEA analysis were used in a stochastic frontier production function and the elasticity associated with each input was estimated. A production frontier was used rather than a production function, as the former accounts for un-measurable differences in quality of inputs as well as other boat-specific characteristics not incorporated into the function in the inefficiency estimated. With a production function, exclusion of these factors may result in mis-specification bias.

The stochastic production frontier was estimated as a translog production function as it is a flexible functional form, and does not impose any assumption on the elasticities of production, the elasticities of substitution between inputs nor on the returns to scale. The translog production function can be expressed as
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where Yj,t represents the standardised output of the vessel j in time period t and Xj,i,t corresponds to the amount of the i-th input used by vessel j in time period t. The error term is divided into two, the stochastic error term (vj,t) and the technical inefficiency term ( uj,t). The error terms are assumed to be independently and identically distributed (iid) N(0,(v2) and the inefficiency terms are non-negative iid random variables having a truncated-normal distribution with variance (u2 .

For comparison, the output was also standardised by the average catch per trip in each month. This has been proposed as an alternative index of stock abundance, although has the features that it assumes constant returns to both stock and the number of trips. Elasticity estimates other than 1 for the trip variable would suggest that this index is not appropriate.

The SPF model was estimated using the FRONTIER 4.1 programme (Coelli, 1996). The parameters are estimated using a Maximum Likelihood procedure taking as initial values the OLS estimates and using an iterative Davidon-Fletcher-Powell algorithm. 

Results

DEA analysis

Only the data from 1992 were used to estimate stock changes due to few observations appearing in the available data set for 1991. The results from the DEA analysis roughly conform to the a priori expectations in terms of stock changes. From Table 2, catches peaked in 1994. This corresponds to an estimated higher than average stock level. Following 1994, catches declined, the assumption being that the stock had been overexploited. This is also apparent in the DEA results, as the stock effect decreases over time, until it reaches a very low level in 1997.

The distribution of the stock effect across the season is also in line with a priori expectations. The octopus is effectively an annual species, and the available stock is effectively mined over the season. As a result, it would be expected that the stock abundance would decrease over the season, and this is apparent in the DEA estimates of the stock effect (Figure 2). The stock effect generally peaks in November each season, indicated by the dashed vertical line in Figure 2, and decreases over the remainder of the season.

Figure 2. Effects of stock changes over time estimated using DEA

[image: image21.emf]0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1

1992

7

1992

1

1993

7

1993

1

1994

7

1994

1

1995

7

1995

1

1996

7

1996

1

1997

7

1997

Average stock effect


The amount of variation around the average value of the stock effect (i.e. 1/2) in each period was relatively small, suggesting the measure is fairly robust. In around half the time periods, the coefficient of variation (CV) associated was less than 10 per cent of the mean value. The number of time periods with relatively large levels of variation (i.e. CV>20%) was relatively small, and less than 8 per cent of the total number of time periods examined.

Figure 3. Distribution of coefficients of variation
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A comparison of the DEA and CPUE stock indexes suggests that both follow a similar trend over the period of the available data (figure 4). However, when the average fishing power of the fleet (related to the physical boat characteristics such as size and engine power) differs over time, the indexes can have differing values. It would be expected that CPUE would tends to overestimate the stock level when the average fishing power of vessels increased in certain time periods, as the output per unit of nominal effort would increase. The data used in this study showed a similar kind of vessels operating through the time periods considered. Average physical capacity was held fairly constant, around 3GRT (most differences were lower than 0.1). The average engine power of the vessels was also quite similar. Despite the relative homogeneity of the fleet over time, it can be observed that the CPUE index overestimate the stock. In the last season (November 1996 – May 1997), the CPUE index was double that estimated using DEA.

Figure 4. Estimates of the DEA and CPUE indexes.
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Stochastic production frontiers

The input elasticities and efficiency distribution of the fleet were estimated using a stochastic production frontier. The stock effects estimated in the DEA analysis were used to modify the dependent variable (catch) of the model (i.e. y* = 2y = y/TE2.) For comparison, the model was also estimated using an index of stock abundance based solely on catch per unit of effort. For consistency, the dependent variable was again modified to adjust for different stock conditions (i.e. y'=y/cpue, where cpue is an index with value of 1 in the base period).

The models were estimated assuming random, rather than fixed, effects. In order to separate out the inefficiency element from the stochastic component of the error term, a distributional assumption was necessary. For the base analyses, it was assumed that the inefficiency would follow a truncated normal distribution with mean  (i.e. 
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, where ( is the average rate of change in inefficiency over time. These distributional assumptions can be tested against alternative distributions.

The results of the maximum likelihood estimates of the stochastic production frontier are given in Tables 3 and 4, and the input elasticities are given in Table 5. From the MLE, the estimated value of  was not significant for the CPUE-based model (Table 3). To test the significance of the assumption of time variable efficiency, a time-invariant model was also carried out for both models (Table 4). From a likelihood ratio test, the assumption that =0 was accepted for the CPUE model, but rejected for the model involving the DEA based measure. The reason for this could be that part of the inefficiency term is included in the CPUE. That is, increases in efficiency over time would result in catch falling at a less than proportional rate to stock decreases. As noted above the divergence between the CPUE and DEA indexes increased over time, with the CPUE index being twice the DEA index in the last season (Figure 4).

From the MLE (Tables 3 and 4), the estimated values of  were highly significant for both model, so tests on alternative specifications of the model (i.e. =0) were not undertaken. The results of the likelihood ratio test on the absence of technical inefficiency effects provided by FRONTIER (see tables 3 and 4) and its comparison with the corresponding critical value in the Kodde and Palm (1986) tables confirm that there exist significant differences in efficiency for the different vessels in all models considered. The positive value for the coefficient of in the DEA model suggests that vessels’ efficiencies increase over time.

Table 3. The estimated stochastic production frontier for the 

time variant model based on the CPUE measure.
DEA stock measure
CPUE stock measure


Coefficient
t-statistic

Coefficient
t-statistic


Constant
4.346
4.588
***
4.948
5.738
***

Lngrt
-2.601
-2.666
***
-3.657
-3.891
***

Lnhp
1.325
2.033
**
0.966
1.672
*

Lntrip
0.994
8.984
***
1.213
13.386
***

ln2grt
-0.242
-0.467

0.078
0.093


ln2hp
-0.337
-2.400
**
-0.288
-2.062
**

ln2trip
-0.113
-10.646
***
-0.025
-2.778
***

Lngrthp
0.920
2.230
**
1.096
2.088
**

Lngrttrip
0.044
0.949

-0.010
-0.265


Lnhptrip
0.063
1.917
*
-0.027
-1.061


sigma-squared
0.130
12.344
***
0.157
8.937
***

Gamma ()
0.278
5.678
***
0.556
14.711
***

Mu ()
0.381
8.118
***
0.592
8.364
***

Eta ()
0.006
4.783
***
0.000
0.020










Log likelihood
-591.559


-330.570



LR test of frontier
595.788


849.948



*** Significant at 1% level; ** significant at 5% level; * significant at 10% level
Table 4. The estimated stochastic production frontier for the time invariant model


DEA stock measure
CPUE stock measure 


Coefficient
t-statistic

Coefficient
t-statistic


Constant
4.127
2.963
***
5.1872
6.0242
***

Lngrt
-2.279
-1.600

-3.5257
-3.7508
***

Lnhp
1.403
1.231

0.8243
1.4322


Lntrip
0.982
9.048
***
1.2088
13.4651
***

ln2grt
-0.078
-0.150

-0.2842
-0.3909


ln2hp
-0.324
-1.396

-0.2932
-2.2034
**

ln2trip
-0.110
-10.963
***
-0.0265
-2.9194
***

Lngrthp
0.721
1.518

1.2534
2.6420
***

Lngrttrip
0.046
1.018

-0.0149
-0.3763


Lnhptrip
0.062
1.975
*
-0.0239
-0.9122


sigma-squared
0.146
10.014
***
0.1561
9.6913
***

Gamma ()
0.336
5.385
***
0.5460
15.0037
***

Mu ()
0.443
6.831
***
0.5839
11.0630
***

















Log likelihood
-605.806


-329.989



LR test of frontier
567.295


851.110



*** Significant at 1% level; ** significant at 5% level; * significant at 10% level

All inputs were inelastic, as expected, with the sum of the input elasticities close to 1, suggesting that the fishery is close to constant returns to scale. In most cases, individual inputs were estimated to experience decreasing returns, although trips appeared to be experiencing increasing returns when CPUE was used as the stock index. The assumption of unitary elasticity for trips was tested and it was rejected at the 10 per cent level, suggesting that the CPUE measure is biased as a unit elasticity for trips was one of the CPUE model assumptions. On the contrary, the elasticity for trips in the DEA Stock model was found significantly different to 1 at the 1% level.

Table 5. Estimated input elasticities at the mean input value



DEA stock measure

 (time variant model)
CPUE stock measure

(time invariant model)


Mean input level
elasticity
t-statistic
Elasticity
t-statistic

Ln(grt)
1.063
0.104
0.766
0.118
0.694

Ln(hp)
3.411
0.123
0.090
0.112
0.072

Ln(trip)
1.864
0.836
65.599
1.013
93.405








Total

1.063
-
1.243
-

The distribution of TE from the two models were not very similar (Figures 5). A higher proportion of inefficient vessels can be found in the CPUE based model. This is consistent with the mean value of the inefficiency term () in Tables 3 and 4. In all cases, the value of  was significantly greater in the CPUE based models than the models using the DEA estimate of the stock index. 

Figure 5. Distribution of average TE of the fleet from the stochastic production frontier
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Discussion and conclusions

The use of DEA to derive an index to account for differences in stock conditions between periods is theoretically more robust that the use of simple measures such as CPUE. The DEA approach is not constrained by the assumptions of constant returns to stock and effort. CPUE measure changes with changes in catch per nominal unit of effort regardless of the characteristics of the vessels operating in the time period considered. In the case of changes in the average technical characteristics of the fleet, the DEA index measure can account for them whereas CPUE does not. Hence, changes in the fleet composition, although relatively minor in this case, could be interfering with changes in the estimates of stock.

The method presented in this paper allows more robust estimates of production functions, frontiers and efficiency when information on stock abundance is not known. As illustrated in the case study to which the method was applied, use of simple proxy measures such as CPUE can result in a distortion in the measures of technical efficiency and production elasticities. The use of the DEA index is free of distributional and production related assumptions in its derivation, and is therefore not subject to the same potential for bias. 

A further potential advantage of the DEA approach that has not been demonstrated in the simple case study presented above is the potential to derive an appropriate multi-species stock index. While attempts have been made to develop multi-species indexes from measures of stock abundance (e.g. based on average revenue shares for the fleet segment as a whole, see Pascoe, Andersen and de Wilde 2001), these assume that all vessels are subject to the same stock conditions. The DEA approach described in this paper can effectively derive individual indexes of stock change in multi-species fisheries that take into consideration the catch composition of the individual fisher, reflecting differences in harvesting strategies. When stock abundance data are not available, then the use of the DEA approach can derive a more consistent measure of stock change than values of CPUE based on some composite catch measure.

The DEA measure, however, does not take into account random variations in output. The effects of this may not be great, as differences in efficiency and ‘luck’ are removed in each period by using the fully efficient level of catch. Assuming that ‘luck’ is relatively constant over the year, then differences between periods should also be minimally affected by differences in random events. However, this is an area for further investigation. In any case, differences in random events between time periods would also be reflected in the use of CPUE indexes, or even the use of dummy variables, so the method is no worse in this regard than the other potential measures of stock changes.
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